Intermittent depolymerization of actin filaments is caused by photo-induced dimerization of actin protomers.
نویسندگان
چکیده
Actin, one of the most abundant proteins within eukaryotic cells, assembles into long filaments that form intricate cytoskeletal networks and are continuously remodelled via cycles of actin polymerization and depolymerization. These cycles are driven by ATP hydrolysis, a process that also acts to destabilize the filaments as they grow older. Recently, abrupt dynamical changes during the depolymerization of single filaments have been observed and seemed to imply that old filaments are more stable than young ones [Kueh HY, et al. (2008) Proc Natl Acad Sci USA 105:16531-16536]. Using improved experimental setups and quantitative theoretical analysis, we show that these abrupt changes represent actual pauses in depolymerization, unexpectedly caused by the photo-induced formation of actin dimers within the filaments. The stochastic dimerization process is triggered by random transitions of single, fluorescently labeled protomers. Each pause represents the delayed dissociation of a single actin dimer, and the statistics of these single molecule events can be determined by optical microscopy. Unlabeled actin filaments do not exhibit pauses in depolymerization, which implies that, in vivo, older filaments become destabilized by ATP hydrolysis, unless this aging effect is overcompensated by actin-binding proteins. The latter antagonism can now be systematically studied for single filaments using our combined experimental and theoretical method. Furthermore, the dimerization process discovered here provides a molecular switch, by which one can control the length of actin filaments via changes in illumination. This process could also be used to locally "freeze" the dynamics within networks of filaments.
منابع مشابه
ADF/cofilin use an intrinsic mode of F-actin instability to disrupt actin filaments
Proteins in the ADF/cofilin (AC) family are essential for rapid rearrangements of cellular actin structures. They have been shown to be active in both the severing and depolymerization of actin filaments in vitro, but the detailed mechanism of action is not known. Under in vitro conditions, subunits in the actin filament can treadmill; with the hydrolysis of ATP driving the addition of subunits...
متن کاملTreadmilling and length distributions of active polar filaments.
The cytoskeleton is a network of filamentous proteins, notably, actin filaments and microtubules. These filaments are active as their assembly is driven by the hydrolysis of nucleotides bound to the constituting protomers. In addition, the assembly kinetics differs at the two respective ends, making them active polar filaments. Experimental evidence suggests, that, in vivo, actin filaments and ...
متن کاملKinetic analysis of F-actin depolymerization in polymorphonuclear leukocyte lysates indicates that chemoattractant stimulation increases actin filament number without altering the filament length distribution
The rate of filamentous actin (F-actin) depolymerization is proportional to the number of filaments depolarizing and changes in the rate are proportional to changes in filament number. To determine the number and length of actin filaments in polymorphonuclear leukocytes and the change in filament number and length that occurs during the increase in F-actin upon chemoattractant stimulation, the ...
متن کاملStructural basis of actin filament capping at the barbed-end: a cryo-electron microscopy study.
The intracellular distribution and migration of many protein complexes and organelles is regulated by the dynamics of the actin filament. Many actin filament end-binding proteins play crucial roles in actin dynamics, since polymerization and depolymerization of actin protomers occur only at the filament ends. We present here an EM structure of the complex of the actin filament and hetero-dimeri...
متن کاملCoupling of actin hydrolysis and polymerization: Reduced description with two nucleotide states
The polymerization of actin filaments is coupled to the hydrolysis of adenosine triphosphate (ATP), which involves both the cleavage of ATP and the release of inorganic phosphate. We describe hydrolysis by a reduced two-state model with a cooperative cleavage mechanism, where the cleavage rate depends on the state of the neighboring actin protomer in a filament. We obtain theoretical prediction...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 109 27 شماره
صفحات -
تاریخ انتشار 2012